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We present the results of numerical simulations of a �2+1�-dimensional fermion field theory based on a
recent proposal for a model of graphene consisting of Nf four-component Dirac fermions moving in the plane
and interacting via an instantaneous Coulomb interaction. In the strong-coupling limit we identify a critical
number of flavors Nfc=4.8�2� separating an insulating from a conducting phase. This transition corresponds to
the location of a quantum critical point, and we use a fit to the equation of state for the chiral order parameter
to estimate the critical exponents. Next we simulate Nf =2 corresponding to real graphene and approximately
locate a transition from strong- to weak-coupling behavior. Strong correlations are evident in the weak-
coupling regime.
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I. INTRODUCTION

While there has been considerable recent interest in
graphene sparked by its discovery and subsequent experi-
mental study,1 the remarkable properties of electronic sys-
tems on two-dimensional honeycomb lattices have been sus-
pected for many years.2 In brief, for a carbon monolayer
having one mobile electron per atom, a simple tight-binding
model shows that the spectrum of low-energy excitations ex-
hibits a linear dispersion relation centered on zeros located at
the six corners of the first Brillouin zone �e.g., Ref. 3�. Using
a linear transformation among the fields at two independent
zeros it is possible to recast the Hamiltonian in Dirac form
with Nf =2 flavors of four-component spinor �—the count-
ing of the massless degrees of freedom coming from two C
atoms per unit cell times two zeros per zone times two physi-
cal spin components per electron. Electron propagation in the
graphene layer is thus relativistic, albeit at a speed of vF
�c /300. The implication for the high mobility of the result-
ing charge carriers �which may be negatively charged “par-
ticles” or positively charged “holes” depending on doping� is
the source of the current excitement. The stability of the
zero-energy points is topological in origin as emphasized in
Ref. 4.

While the above considerations apply quite generally, a
realistic model of graphene must incorporate interactions be-
tween charge carriers. One such model due to Son5 has Nf
massless fermion flavors propagating in the plane but inter-
acting via an instantaneous 3d Coulomb interaction. In Eu-
clidean metric and static gauge �0A0=0 the action reads

S1 = �
a=1

Nf � dx0d2x��̄a�0�0�a + vF�̄a�� . �� �a + iV�̄a�0�a�

+
1

2e2� dx0d3x��iV�2, �1�

where e is the electron charge, V�A0 is the electrostatic
potential, and the 4�4 Dirac matrices satisfy ��� ,���
=2��� with �=0,1 ,2 ,3. In our notation x� is a vector in the
2d plane while the index i runs over all three spatial direc-
tions. Within the graphene layer, classical propagation of the

potential is obtained by integrating over the perpendicular
coordinate, yielding

D0�p� =
e2

2	p� 	
. �2�

To proceed, assume a large-Nf limit so that the dominant
quantum correction ��p� comes from a vacuum polarization
fermion—antifermion loop. The resummed V propagator be-
comes

D1�p� = 
D0
−1�p� − ��p��−1 = �2	p� 	

e2 +
Nf

8

	p� 	2

�p2�1/2
−1

, �3�

where p2= �p0 , p��2� p0
2+vF

2 	p� 	2. In either the strong-coupling
or large-Nf limits D1�p� is thus dominated by the quantum
correction—the relative importance of the original Coulomb
interaction being governed by a parameter ��	� /D0	p0=0.
Restoring international system �SI� of units, we obtain

� =
e2Nf

16	0
vF
� 1.7Nf . �4�

The form of interaction �3� means that analytic methods
are trustworthy in the large-Nf regime. For instance, in the
strong-coupling limit e2→� �in experiments it is only pos-
sible to reduce the effective electron charge by mounting the
graphene layer on a dielectric substrate� we expect a modi-
fication of the dispersion relation such that the fermion en-
ergy is related to momentum via �
 pz, where z is a dynami-
cal critical exponent predicted to take the value z�1− 4

�2Nf

�0.8 for Nf =2.5 Reference 5 in addition discusses the phase
diagram of graphene model �1� in the �Nf ,e

−2� plane and
raises the possibility of symmetry breaking due to nonpertur-
bative Nf

−1 effects. The symmetry breaking, due to the spon-
taneous condensation of particle-hole pairs, is signaled by an

order parameter ��̄���0—in relativistic field theory this is
known as “chiral symmetry breaking.” Physically the most
important outcome is the generation of a gap in the fermion
spectrum implying that the model describes an insulator. Son
postulated that this insulating phase exists in the corner of
the phase diagram corresponding to large e2 and small Nf,
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and in particular, that the insulator-conductor phase transition
taking place at Nf =Nfc in the strong-coupling limit e2→� is
a novel quantum critical point. It is important to stress that,
while we have followed Son’s work closely in this presenta-
tion, many of the important features of this model such as the
instantaneous interaction, the role of the vacuum polarization
��p�, the possibility of spontaneous symmetry breaking via
condensation of particle-hole pairs, and the nature of the
phase diagram in the �Nf ,e

−2� plane were first obtained in
Refs. 6. The value of Nfc, and the issue of whether it is
greater than or less than the physical value Nf =2, must be
settled by a nonperturbative calculation. Recent estimates
have been obtained by: self-consistent solution of the
Schwinger-Dyson equation for the gap6 yielding Nfc=2.55;
and by a renormalization-group treatment of radiatively in-
duced four-fermion contact interactions7 yielding Nfc=2.03.

The proposed physics is very reminiscent of another 2
+1d fermion model, this time relativistically covariant,
namely, the Thirring model with action

STh = �
a=1

Nf � dx0d2x��̄a�����a +
g2

2
��̄a���a�2
 , �5�

with �=0,1 ,2—particularly once we insist on units such
that vF=1. Note that in contrast to the graphene model the
coupling g2 has mass dimension of −1. Once again, the
model is analytically tractable at large Nf but exhibits spon-
taneous chiral symmetry breaking leading to gapped fermi-
ons at small Nf and large g2.8,9 Arguably the Thirring model
is the simplest field theory of fermions requiring a computa-
tional solution: the location of the phase transition at Nf
=Nfc in the strong-coupling limit has recently been deter-
mined by lattice simulation to be Nfc=6.6�1�.10 The apparent
similarity of the two systems has led us to propose a
Thirring-type model pertinent to graphene, with action

S2 = �
a=1

Nf � dx0d2x��̄a�����a +
g2

2
��̄a�0�a�2
 . �6�

The only difference with Eq. �5� is that the contact interac-
tion is now only between the timelike components of the
fermion current so that the model is no longer covariant.

The traditional way to proceed is to introduce an auxiliary
boson field V. The resulting action

S2� = �
a=1

Nf � dx0d2x��̄a�����a + iV�̄a�0�a +
1

2g2V2
 �7�

reproduces the identical dynamics as Eq. �6� once V is inte-
grated out. As for Eq. �1� we assume a large-Nf limit to
estimate the dominant vacuum polarization correction; the
resultant propagator for V is

D2�p� = � 1

g2 +
Nf

8

	p� 	2

�p2�1/2�−1

. �8�

In the strong-coupling or large-Nf limits, D2 coincides with
D1 of Eq. �3�, implying that the fermion interactions are
equivalent. It is also the case that limp→�D2�p�
=lim�→�D1�p�. This last limit is important because critical

behavior in the Thirring model �5� is governed by a UV-
stable fixed point of the renormalization group.8 We antici-
pate that model �6� is similar and expect its predictions, in
particular for critical behavior such as the value of Nfc, to be
generally valid for Son’s model �1� in the limit of large �.

In Sec. II we present a version of action �7� discretized on
a spacetime lattice and outline how its dynamics can be in-
vestigated by standard Monte Carlo simulation techniques.
This paper applies lattice gauge theory techniques to
graphene. In this first paper we focus exclusively on the

equivalent of the order parameter ��̄�� in the �Nf ,g
−2� plane.

In Sec. III A we explore the strong-coupling limit and iden-
tify the critical flavor number Nfc and then attempt to char-
acterize the transition from insulator to conductor by study-
ing the critical equation of state using finite-volume scaling
�FVS�. In Sec. III B we switch attention to the physical case

Nf =2 and present results from a study of ��̄�� as a function
of g2. A brief discussion of the implications for the graphene
model of Ref. 5 follows.

II. LATTICE MODEL AND SIMULATION

The lattice model studied in this paper is closely related to
the lattice Thirring model studied in Ref. 8. It is written in
terms of staggered lattice fermions, i.e., single-component
Grassmann fields � , �̄ defined on the sites x of a three-
dimensional cubic lattice, by the action

Slatt =
1

2 �
x�a

�̄ax��x��1 + ��0�2g2

N
eiVx��ax+�̂

− �1 + ��0�2g2

N
e−iVx−0̂��ax−�̂
 + m�

xa

�̄ax�ax.

�9�

The flavor indices are a=1, . . . ,N. The sign factors �x�

��−1�x0+¯+x�−1 ensure that in the long-wavelength limit the
first �anti-Hermitian� term in Slatt describes the Euclidean
propagation of Nf =2N flavors of relativistic fermion de-
scribed by four-component spinors.11 The fermion mass term
proportional to m has been added to provide an IR regulator
for modes which would otherwise be massless; beyond the
usual critical slowing down, it is important to stress that
simulations directly in the limit m→0 present severe techni-
cal difficulties. The hopping terms in Slatt involve the auxil-
iary boson field Vx which is formally defined on the timelike

links connecting sites x with x+0̂. The N dependence in the
kinetic terms is conventional and retained to ensure continu-
ity with the studies of Refs. 8–10. In order to compare with
the formulation of Sec. I the rescaling g2→Ng2 is required.

It can be shown that action �9� can be re-expressed in
terms of four-component spinors in a form similar but not
identical to Eq. �6�. For full details of the relation between
the two actions we refer the reader to Ref. 8. Here we merely
note that the spontaneous generation of a condensate ��̄��
�0 in the lattice model results in a chiral symmetry-breaking
pattern U�N� � U�N�→U�N�, whereas in continuum model

�6� ��̄���0 breaks U�2Nf�→U�Nf� � U�Nf�.3 A term pro-
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portional to m explicitly breaks the symmetry in either case.
It is plausible that the effective global symmetry of the lattice
model enlarges in the continuum limit and the correct con-
tinuum pattern recovered. In what follows we will assume
that the chiral symmetry breaking described by ��̄���0 is
equivalent to the metal-insulator transition.

The novelty of Ref. 10 was the first study of Thirring
model �5� by lattice means in the strong-coupling limit g2

→�. Since we aim to repeat the strategy here we discuss
how this was done. First, note that the vacuum polarization
calculation leading to results �3� and �8� does not go through
in quite the same way for lattice regularized model �9�;
rather, there is an additive correction which is momentum
independent and UV divergent,

�latt�p� = �cont�p� + g2J�m� , �10�

where J�m� comes from incomplete cancellation of a lattice
tadpole diagram.8 This extra divergence �not present in the
continuum treatments� can be absorbed by a wave-function
renormalization of V and a coupling-constant renormaliza-
tion

gR
2 =

g2

1 − g2J�m�
. �11�

In the large-Nf limit we thus expect to find the strong-
coupling limit of the lattice model at gR

2 →� implying g2

→glim
2 =J−1�m�. For g2�glim

2 , Dlatt�p� becomes negative, and
Slatt no longer describes a unitary theory.

Away from the large-Nf limit, where chiral symmetry may
be spontaneously broken, there is no analytical criterion for
identifying glim

2 ; however, in this case a numerical calculation
of ��̄�� shows a clear peak at g2=gpeak

2 , whose location is
approximately independent of both volume and m, indicating
an origin at the UV scale.10 Figure 1 exemplifies this behav-
ior in model �9� with Nf =2 on system volumes L3: for L
�24 we identify 1 /gpeak

2 �0.3. Since for orthodox chiral
symmetry breaking the magnitude of the condensate is ex-
pected to increase monotonically with the coupling strength,
we interpret the peak as the point where unitarity violation

sets in, i.e., glim
2 �gpeak

2 . In Sec. III, we shall use simulations
performed at g2=gpeak

2 to explore the strong-coupling limit
and find evidence for a chiral symmetry restoring phase tran-
sition at a well-defined Nfc.

Writing action �9� in the form �̄iMij� j, it is possible to
integrate out the fermion fields analytically to yield the path
integral

Zlatt =� DV�det M
V;m��N. �12�

Techniques to simulate the physics described by Eq. �12�
typically proceed by evolving a boson configuration �V�
through a fictitious simulation time using a quasi-
Hamiltonian dynamics in which quantum effects are incor-
porated via periodic stochastic refreshments. We implement
this using the hybrid molecular-dynamics �HMD�
algorithm.12 The key step in the evolution involves the cal-
culation of a force,

−
�S

�V
= NtrM−1�M

�V
. �13�

Since the force can be calculated for arbitrary N, it is pos-
sible to simulate the dynamics for noninteger N, which is
equivalent to regarding path integral �12� as the fundamental
definition of the model. Of course, only for integer N, and
therefore, for even integer Nf, is it possible to express the
theory as a local action in the fermion variables � , �̄.

In the simulations described in this paper we used a HMD
algorithm to perform simulations with arbitrary Nf. In prin-
ciple, this method is not exact in the sense that results have a
systematic dependence on the discrete time step �� used to
integrate the HMD equation of motion. We have used ��
=0.0025 on the smallest systems �163, 243, 323�, ��
=0.001 25 on 162�48, and ��=0.000 625 on 162�64; in
all cases we checked that the resulting systematic error is
smaller than the statistical error. The mean trajectory length
�̄=1.0 and ��̄�� are measured using ten stochastic estimators
after every trajectory. Roughly 200–400 trajectories were
generated for 162�48, 64, and 600 for 243 and 323, and
O�1000� for 163. Further details of the numerical methods
used can be found in Refs. 8 and 9.

III. RESULTS

We performed simulations on system volumes Ls
2Lt=163,

243, and 323 using fermion masses m=0.01, . . . ,0.04. Be-
cause action �9� does not treat spacelike and timelike direc-
tions equivalently, we also found it useful to explore the
consequences of independently varying Ls and Lt, and thus,
in addition studied 162�48,64; 242�32,48; and 322�24.
As we shall see, the anisotropic nature of the model dynam-
ics results in the systematic effects due to finite Lt being
much more important than those due to finite Ls. The only
observable discussed in this initial study is the chiral conden-
sate ��̄����trM−1�.

A. Strong coupling limit

As described above, to explore the strong-coupling limit
gR

2 →� we made the ansatz g2=gpeak
2 , where gpeak

2 denotes the
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FIG. 1. �Color online� ��̄�� vs 1 /g2 for Nf =2.
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location of the peak in ��̄�� at given Nf. Figure 2 shows
1 /gpeak

2 �Nf� for some representative lattice volumes and fer-
mion masses, confirming that its value �arising as it does
from UV lattice artifacts� is �to good approximation� volume
and mass independent. The behavior is qualitatively similar
to that found for the strong-coupling Thirring model shown
in Fig. 3 of Ref. 10. We see that 1 /gpeak

2 decreases as Nf
increases from 2 to 4.75, at which point the curve reaches a
minimum. There is then a steep increase at Nf �4.9 followed
by a leveling off, implying a significant change in the model
strong-coupling behavior. Our interpretation, to be supported
below by a study of the equation of state, is that for Nf below
the change the model is in a chirally broken phase and that
above the change chiral symmetry is restored, implying
limm→0��̄��=0. Using this criterion we identify the critical
flavor number for chiral symmetry restoration in the strong-
coupling limit, with a conservative error, as

Nfc = 4.8�2� . �14�

In the rest of this section we analyze data taken at g2=gpeak
2

in an attempt to determine the critical equation of state
��̄��m ,Nf�� in the strong-coupling limit. Note that typically
four to six independent simulations were used to identify
gpeak

2 for each Nf. In the thermodynamic zero-temperature
limit, a simple ansatz for the approximate scaling behavior
close to a quantum critical point is given by

m = A�Nf − Nfc���̄��p + B��̄���, �15�

where ��̄�� 	Nf=Nfc

m1/� and the conventional exponent in

��̄�� 	m=0
 �Nfc−Nf�� for Nf �Nfc is given by �= ��− p�−1.
We must, however, take account of the fact that our data are
taken on finite systems. Figure 3 shows data for m=0.01
from various lattices: a comparison between 162�48 and
242�48 demonstrates that the dominant finite-volume ef-
fects are due to varying Lt, while the effects of finite Ls are
negligible for Ls�16.

The theory of finite-volume effects in models such as Eq.
�9� with anisotropic correlations is outlined in Ref. 13. Near
a critical point it is possible, in principle, to distinguish two
correlation lengths �s and �t, each diverging with a distinct
critical exponent �s or �t as Nf →Nfc. In d spacetime dimen-

sions these are related to conventionally defined exponents
governing scaling of the order parameter and its associated
susceptibility via a generalized hyperscaling relation

�t + �d − 1��s = � + 2� . �16�

Motivated by Fig. 3, in our analysis we take a pragmatic
approach and assume all volume effects are due to finite Lt.
The ansatz for the modified equation of state, inspired by a
renormalization-group analysis,8 is then

m = A
�Nf − Nfc� + CLt
−1/�t���̄��p + B��̄���; �17�

we fit this form to our data set with a least-squares fit. Our
complete data set contains 124 data taken at various Nf, m,
Ls, and Lt �recall that the value of 1 /gpeak

2 must be indepen-
dently determined for each parameter set, so the simulation
effort involved is considerable; approximately 100 000 pro-
cessor hours using 2.4 GHz Opterons were required�.

Experience with previous models shows that the fitted
equation of state is very sensitive to assumptions made about
the scaling window �i.e., the ranges of Nf and m included in
the fit�, and the smallest volume included in the scaling an-
satz �17�. For this reason we judge that it is best to present a
compilation of different fits in Table I. We tried fits to both
the “power” equation-of-state �15�, with five free parameters,
using data from a single lattice size 162�64 and fits using
the finite-Lt FVS scaling form �17� with seven free param-
eters. �Note that it is not possible to use hyperscaling to
constrain the value of vt as done in Refs. 8–10.� In the latter
case data with Nf �5 were excluded from the fit because
their small error bars destabilized the fits; since this data
probably come from the chirally symmetric phase, there may
be a small systematic error in the identification of gpeak

2

across the transition.
Fits to Eq. �15� favor Nfc�3.8–4 and p�0.9. These val-

ues are also favored by the most comprehensive FVS fit to
the 96 data points with Nf �5. There is no evidence that
discarding m=0.01 data, which may be most prone to finite-
volume artifacts, improves any of the fits. On the other hand,
discarding Lt=16 and perhaps Lt=24 does have a significant
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effect on the fitted values of Nfc, p, and �t in the FVS fits. In
these cases the fitted ��4. However, once data with ex-
tremal values of Nf are excluded, on the assumption that they
lie outside the scaling window, the fitted values of � rise to
�5. In almost all cases the fitted value of �t exceeds 1,
although often not by a statistically significant margin.

Our favorite fit, yielding the smallest �2 /dof, emerges
from the 60 data points with Nf � 
3,5� and Lt�32. Another
reason for preferring this is that the fitted Nfc is consistent
with value �14� coming from the behavior of gpeak

2 �Nf�, which
could be regarded as an additional constraint on the global
fit. The fit is plotted in Fig. 4 in terms of the control param-
eter in the thermodynamic limit Nf�=Nf +CLt

−1/�t, so that data
with differing Lt should collapse onto a single curve for each
value of m.

To summarize: this “best” fit provides a reasonable de-
scription of the data in the window 4.5�Nf��6, in particular
for the smallest mass m=0.01; fits of form �17� are capable
of yielding a fitted Nfc consistent with Eq. �14�; and the
preferred value of �t�2 once this consistency criterion is
applied.

B. Nf=2

Next we turn our attention to the physical case Nf =2.
Since Nfc�2, we expect chiral symmetry to be broken at
strong coupling and potentially restored at some finite gR

2 .
This transition has been studied using renormalization-group
methods in Ref. 14. Accordingly we study ��̄�� as a function
of 1 /g2. Our results are summarized in Fig. 5.

As before, we have attempted to fit a critical equation of
state using form �15� to data from 162�64 and form �17� in
each case replacing �Nf −Nfc� with �g−2−gc

−2�. No stable fits
were found unless data with 1 /g2�1 were excluded. Our
most comprehensive fit, using the FVS form and restricting
the data to Lt�48 with 1 /g2�0.9, yields 1 /gc

2=0.632�6�
and is shown in the figure. All the fits we found identify a
1 /gc

2�0.6�1 /gpeak
2 , but all clearly undershoot the data at

weaker couplings by a considerable margin. We conclude
that the equation-of-state Ansätze �15� and �17� are inad-
equate to describe the data.

Instead, we will distinguish between a “strong-coupling”
regime 1 /g2�0.75 where ��̄�� is numerically large and
finite-volume effects are negligible, and a “weak-coupling”
regime 1 /g2�0.75 where the opposite holds true. Two com-

TABLE I. Various fits to the equations-of-state �15� power and �17� “FVS.”

Fit # data A B Nfc � p C �t �2 /dof

Power 28 0.31�3� 41.5�15� 3.81�3� 3.96�3� 0.87�3� 4.8

Power, m�0.02 18 0.30�7� 87�55� 3.87�9� 4.4�4� 0.82�6� 5.9

Power, m�0.03 12 2.1�10� 3800�18� 4.3�1� 6.0�1� 1.3�1� 6.4

FVS, m=0.01 53 1.5�7� 63�22� 4.60�15� 3.9�1� 1.3�1� 9.7�10� 1.7�2� 4.0

As above Lt�24 48 4.5�32� 161�97� 4.95�16� 4.0�1� 1.6�2� 7.9�5� 2.1�2� 4.0

As above Nf �4.5 46 712�100� 2.3�3��104 4.46�9� 5.25�4� 3.00�4� 15�3� 1.2�1� 5.4

FVS, all m 96 0.23�1� 19�2� 3.85�4� 4.03�8� 0.88�1� 17.5�17� 1.10�5� 6.3

As above Lt�32 70 0.20�1� 10.5�1� 4.7�3� 3.6�1� 0.82�2� 6.0�6� 2.6�8� 5.1

As above Nf �3 60 0.21�1� 237�106� 4.6�7� 5.5�3� 0.86�2� 8.1�34� 2.1�1.1� 3.1

Nf �3 Lt�24 75 0.21�1� 352�137� 4.1�1� 5.8�2� 0.87�2� 15�4� 1.3�2� 3.4

FVS, m�0.02 43 0.19�2� 10.4�18� 3.76�11� 3.55�13� 0.78�3� 24�15� 0.9�2� 7.3

As above Lt�32 32 0.16�2� 6.5�14� 3.9�4� 3.21�15� 0.72�4� 12�19� 1.2�9� 6.4
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FIG. 4. �Color online� Finite volume scaling fit to Eq. �17� to
data with m=0.01 �circles�, 0.02 �squares�, 0.03 �diamonds�, and
0.04 �triangles� in terms of Nf�.
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QUANTUM CRITICAL BEHAVIOR IN A GRAPHENELIKE MODEL PHYSICAL REVIEW B 78, 165423 �2008�

165423-5



ments about the weak-coupling regime are worth making.
First, as is clear from Figs. 5 and 6, finite-volume effects are
unexpectedly large and indeed increase in relative impor-
tance until 1 /g2�1; it is this feature that has made a global
FVS fit impossible. In a conventional symmetry-breaking
scenario, by contrast, one expects the finite-volume effects to
be larger in the broken phase, where there are long-range
correlations due to Goldstone bosons. Second, in a chirally
symmetric phase one expects ��̄��
m for small m and weak
interactions; inspection of the data plotted in Fig. 6 appears
to imply either that a linear extrapolation to m→0 would
yield a nonvanishing order parameter, or alternatively, that
chiral symmetry restoration for these values of g2�gc

2 would
require ��̄��m�� to exhibit some negative curvature, for
which there is some tentative evidence in the figure. We con-
clude that either chiral symmetry remains broken at weak
coupling or that there are long-range correlations in this re-
gion.

We briefly consider alternative scaling scenarios. In the
chiral and thermodynamic limits two other kinds of behavior
are possible to envisage and are not currently excluded by
our data. First, a form ��̄��=Ae−B/g2

would predict broken
chiral symmetry for all g2. This is barely credible since the
�− �̄ forces in this model are weaker than for the Nf =2
Thirring model, where two independent simulation studies
find a second-order chiral restoring transition at 1 /g2�1.9
�Refs. 8 and 15� 
Fig. 5 also shows Thirring data from 16

�103 �Ref. 8��. Second, ��̄��=Ae−B/�gc
−2 − g−2�q

describes chi-
ral symmetry restoration via an infinite order phase transition
at g2=gc

2. Without a reliable finite-volume scaling hypothesis
we cannot estimate gc

2, B, or q. By analogy with the
Kosterlitz-Thouless transition in 2d systems, though, this
scenario predicts a critical, and hence, strongly fluctuating
system for g2�gc

2 which could plausibly account for the ob-
servations reported above. A similar scenario is predicted
under certain circumstances in Ref. 16.

IV. DISCUSSION

In this paper we studied model �6� which has very similar
properties, including the same global symmetries, as the

graphene-related model recently proposed to describe quan-
tum critical behavior in the �Nf ,e

2� plane.5 Using a simula-
tion strategy devised for the 2+1d Thirring model,10 we have
identified the critical number of flavors separating insulating
from conducting phases in the strong-coupling limit to be
Nfc=4.8�2�. This implies that the strong-coupling limit of
graphene with Nf =2 is an insulator. Since the properties of a
critical point should be universal, we expect this result to be
a robust prediction of our work, thus, furnishing the first
systematic nonperturbative prediction of quantum critical be-
havior in this system. We also managed a reasonable fit of
our strong-coupling data to an equation of state describing a
continuous phase transition at the critical point and obtained
estimates for the critical exponents.

The fitted value of �t gives partial information about the
nature of correlations in the vicinity of the fixed point. Sub-
stituting our favored values �=5.5, p=0.86, and �t=2.1 into
Eq. �16�, we obtain �s= 1

2�−0.83. Without studying the
order-parameter susceptibility we have no independent esti-
mate of �, but note that it would need to have a value of
O�6� in order for �s to exceed �t. Now, there is a further
relation governing the scaling of critical correlation
functions,13

�d − 2 + �t��t = �d − 2 + �s��s ⇒
�t

�s
=

1 + �s

1 + �t
, �18�

where order-parameter correlations ��̄��0��̄��xs,t��
xs,t
−�s,t at

criticality with the exponent taking the appropriate value de-
pending on whether the displacement x is timelike or space-
like. The ratio �s /�t�1 if �s /�t�1 and vice versa. How-
ever, �s /�t may be identified with the dynamical critical
exponent z characterizing the quantum critical point, in the
sense that the dynamics remains invariant under the scale
transformation x�→�x� ; x0→�zx0. By considering the anoma-
lous dimension of the Fermi velocity using the 1 /Nf expan-
sion, Son5 obtained z�1, which has implications for the sta-
bility of the quasiparticle excitations. If we assume that the
same critical exponent governs both quasiparticle and order-
parameter correlations, then reconciling the two calculations
requires an unusually large value of �.

Next, we set Nf to the physical value 2 and studied the
chiral order parameter as a function of coupling strength.
Here our results are harder to interpret; we observe a cross-
over from strong- to weak-coupling behavior at 1 /g2�0.75
but were unable to model the equation of state, leaving the
nature of the weak-coupling regime unclear. There is evi-
dence, both from the large finite-volume effects and the cur-
vature in ��̄��m��, for strong correlations. Work is currently
in progress to study the quasiparticle propagator in order to
explore the dispersion relation and expose any quantum criti-
cal behavior from an independent direction, and also to fur-
ther investigate the nature of the fluctuations in the weak-
coupling phase at Nf =2.
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